378 research outputs found

    Produktionsverfahren des Ökologischen Landbaus in Baden-Württemberg

    Get PDF
    Diese Datensammlung ist als Hilfsmittel für die Betriebsplanung gedacht. Es stellt standardisierte Produktionsverfahren des Ökolandbaus in Baden-Württemberg dar, wobei die wichtigsten Verfahren des Ackerbaus, der Rindviehhaltung, des Feldfutterbaus und des Grünlandes aufgeführt sind. Die Ausgleichszahlungen und Prämien sind bis zum Jahr 2002/2003 aufgeführt: Für die Deckungsbeitragsrechnung wurde das Jahr 2002/2003 berücksichtigt. Als Maßnahme des MEKA (Marktentlastungs- und Kulturlandschaftsausgleichsprogramm) ist die Beibehaltung des ökologischen Landbaus in die Berechnung mit einbezogen

    Early prediction of survival after open surgical repair of ruptured abdominal aortic aneurysms

    Get PDF
    Background: Scoring models are widely established in the intensive care unit (ICU). However, the importance in patients with ruptured abdominal aortic aneurysm (RAAA) remains unclear. Our aim was to analyze scoring systems as predictors of survival in patients undergoing open surgical repair (OSR) for RAAA. Methods: This is a retrospective study in critically ill patients in a surgical ICU at a university hospital. Sixty-eight patients with RAAA were treated between February 2005 and June 2013. Serial measurements of Sequential Organ Failure Assessment score (SOFA), Simplified Acute Physiology Score II (SAPS II) and Simplified Therapeutic Intervention Scoring System-28 (TISS-28) were evaluated with respect to in-hospital mortality. Eleven patients had to be excluded from this study because 6 underwent endovascular repair and 5 died before they could be admitted to the ICU. Results: All patients underwent OSR. The initial, highest, and mean of SOFA and SAPS II scores correlated significant with in-hospital mortality. In contrast, TISS-28 was inferior and showed a smaller area under the receiver operating curve. The cut-off point for SOFA showed the best performance in terms of sensitivity and specificity. An initial SOFA score below 9 predicted an in-hospital mortality of 16.2% (95% CI, 4.3–28.1) and a score above 9 predicted an in-hospital mortality of 73.7% (95% CI, 53.8–93.5, p 45), the in-hospital mortality rate was 85.7% (95% CI, 67.4–100, p < 0.01) versus 31.6% (95% CI, 10.7–52.5, p = 0.01) when it decreased. On multiple regression analysis, only the mean of the SOFA score showed a significant predictive capacity with regards to mortality (odds ratio 1.77; 95% CI, 1.19–2.64; p < 0.01). Conclusion: SOFA and SAPS II scores were able to predict in-hospital mortality in RAAA within 48 h after OSR. According to cut-off points, an increase or decrease in SOFA and SAPS II scores improved sensitivity and specificity

    Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c <i>In Vitro</i>

    Get PDF
    Background: Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion

    Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection

    Get PDF
    Abstract: Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. Author Summary: A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death

    An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR

    Get PDF
    Mammalian target of rapamycin (mTOR), a large multidomain protein kinase, regulates cell growth and metabolism in response to environmental signals. The FKBP rapamycin-binding (FRB) domain of mTOR is a validated therapeutic target for the development of immunosuppressant and anticancer drugs but is labile and insoluble. Here we designed a fusion protein between FKBP12 and the FRB domain of mTOR. The fusion protein was successfully expressed in Escherichia coli as a soluble form, and was purified by a simple two-step chromatographic procedure. The fusion protein exhibited increased solubility and stability compared with the isolated FRB domain, and facilitated the analysis of rapamycin and FK506 binding using differential scanning calorimetry (DSC) and solution nuclear magnetic resonance (NMR). DSC enabled the rapid observation of protein–drug interactions at the domain level, while NMR gave insights into the protein–drug interactions at the residue level. The use of the FKBP12–FRB fusion protein combined with DSC and NMR provides a useful tool for the efficient screening of FKBP12-dependent as well as -independent inhibitors of the mTOR FRB domain

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Platelets Boost Recruitment of CD133+ Bone Marrow Stem Cells to Endothelium and the Rodent Liver-The Role of P-Selectin/PSGL-1 Interactions

    Get PDF
    Lehwald N, Duhme C, Pinchuk I, et al. Platelets Boost Recruitment of CD133+ Bone Marrow Stem Cells to Endothelium and the Rodent Liver-The Role of P-Selectin/PSGL-1 Interactions. International journal of molecular sciences. 2020;21(17): 6431.We previously demonstrated that clinical administration of mobilized CD133+ bone marrow stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4 had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia, the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened transmigration towards the extra sinusoidal space when compared to perfusion conditions without platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights suggest a new mechanism of platelets to augment stem cell dependent hepatic repair

    An approach to analyse the specific impact of rapamycin on mRNA-ribosome association

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background.</p> <p>Methods</p> <p>We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out). For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation.</p> <p>Results</p> <p>High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug.</p> <p>Conclusion</p> <p>The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of a particular drug in a living cell.</p
    corecore